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Abstract. Using our previous K d v  solution, we apply a Backlund transformation to obtain 
new sets of solutions to another nonlinear equation y, + yxxx -6yzy,  +6y, = 0 based on 
theorems deduced by us recently. The solutions to the above equation can be separated 
into three categories: A > 0, A = 0,  A < 0. When A = 0, the above equation becomes the 
modified K d v  (MKdv)  equation. From these solutions (A # o), we have also obtained new 
solutions (which also contain a non-zero parameter A )  to the standard MKdV equation. 
In this investigation, we analyse in detail our solutions for the cases A > O  and A = 0. 
Many numerical examples are given to  illustrate the main features of some of our new 
solutions. 

1. Introduction 

Recently, we have obtained a set of solutions to the K d v  equation via the Backlund 
transformation (Au and Fung 1982a, b, Wahlquist and Estabrook 1975) using a 
differential geometrical approach. In our derivation, we have emphasised the physical 
meaning of a certain parameter, called the vacuum parameter 6 ,  which appears in the 
solutions. Since the value of the vacuum parameter controls certain physically observ- 
able situations (like the direction, magnitude of the velocity and amplitude of the 
solitary wave), we are led by our deduction to believe that 6 represents physically 
observable effects in a K d v  soliton. It is natural to try to find out whether solutions 
of other nonlinear equations contain physically significant vacuum state parameters. 

In the second paper of our series (Fung and Au 1982), using the close-ideal 
condition in our differential geometrical approach which guarantees the integrability 
condition, we have built a bridge connecting the solutions of the K d v  equation and 
the nonlinear equation (10) of which the M K d v  equation is a special case. The theorems 
we have established in our second paper are rather powerful, covering ground of 
which the Miura transformation represents part of our area. Using the above Backlund 
transformation techniques, we have obtained a set of kink-antikink solutions to (lo), 
where the vacuum parameter has physical meaning, but is no longer simply b. 

To follow up our research work, using a K d v  solution U = -1 /x2  we employ our 
Backlund transformation again to obtain a new set of solutions to (10) in this paper, 
using the theorems we have just established. We have discovered that one new set 
of solutions to (10) has singularity properties and the kink-antikink soliton propagates 
to the right with a varying velocity in a transient domain of space and time. When 
the parameter A is zero in (lo), we have the MKdV equation. The new set of M K d v  
solutions is not a common one-soliton or kink-antikink solution, but has rather 
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interesting propagating properties. In order to demonstrate the main features of our 
discovery, we have performed numerical analysis on our new solutions in this investi- 
gation. 

2. Solutions to the nonlinear equation y, + y,, - 6y *y, + 6Ay, = 0 

We have obtained solutions to the Kdv equation 

ut +U,,, + 12uu, = 0. 

Using the Backlund transformation 

u * = b  

U * = U (x, t )  
2 U*=-u(x , t ) -y  + A  

where the function y(x, t )  is restricted by the conditions 
2 yx = - 2 ~  (x, t )  - y + A  

Yr = - 4 [ ~  (x, t )  + A  ]yx + 2 ~ , ,  - 4u,y 

these solutions are 

u * = b  

U* = b - (X - 12bt - ~ g ) - ’  for A = 26 

{c exp[(A - 2b)”2r] -exp[-(A -2b)’’2r]}2 
{c exp[(A -2b)1’Zr]+exp[-(A -2b)”zr]}z u * = A  -b  - (A  -2b)  (9) 

where r = x -4(b + A ) t ,  and b and C are constants. 
We have proved (Fung and Au 1982) that if U satisfies the K d v  equation, then 

the solution to y thus obtained by the Backlund transformation (5)-(6) satisfies the 
nonlinear equation 

(10) 
and vice versa; namely if y satisfies (IO), then U = -$(y2+yx - A )  satisfies the K d v  
equation. In this investigation, we shall take solution (8) under the special condition 
b = 0 (and x o  = 01, namely 

(11) 

Yr  + y x x x  - 6y 2 ~ x  + 6Ay.x = 0 

2 U = - l l x  , 

and find a new set of solutions to (10). Along these lines we first write (6) in the 
following form, using (1 1): 

4(A - 1 / X 2 ) y x  + ~ , = - 4 ( 3 / ~ ~ + 2 y l x ~ ) .  (12) 

The characteristic equations of (12) are 

dx = dt = dY 
4(A - 1/x2) -4(3/x4 + 2y/x3)’ 
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We can readily solve equations (13) for three different domains of the parameter 
A :  

1 + T ( * L i )  Ax ’ (for A > 0 )  
y=x (Ax2-1 )  \AX -1) 

(for A = 0) 
1 X 2  

y = - - + ,  3 
x 3x + 4 t + D  

where D is a constant and the time-dependent argument 5 is given by 

(for A < 0) (18) 
1 
k 

[ = x  --tan-’(kx)+4k2t 

while k 2  = - A .  
We would remark that for A < 0, solution (15) remains real. We have substituted 

solutions (14)-(16) back into (lo), to check that they satisfy the new nonlinear 
equation (10). Note that if y(x, t )  satisfies ( lo), then -y(x, t )  also satisfies (10). 

It is worth noting that the equation under study (namely (10)) can be transformed 
to the MKdV equation 

(19) 
2 

yr+yxxx-6~ y x = O  

via the transformation 

t’ = t X ’ = X  -6At. (20) 

It is easy to verify by direct substitution that if y(x, t )  is a solution to ( lo), then 
y(x +6At, t )  is a solution to (19). The reverse state is also true: if y ( x ,  t )  is a solution 
to (19), then y(x -6At, t )  is a solution to (10). Based on our investigation presented 
in this section, while expressions (14) and (15) are solutions to ( lo), accordingly the 
following expressions (21) and (22) are respectively the solutions to (19): 

A (X + 6At)’ j h  + 1 
=(x+6At)[A(x +6At)’-l] IA(x +6At )2- l I  

q = x - k-’ tan-’[k (x + 6At)]+ 2At for A < O  
2 k = - A .  
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In the reverse direction, based on solution (16), it is elementary to find that 

3(x -6At)' + 1 
= - ( X  - 6 A t )  (X -6At)3+12t+D 

is the corresponding solution to (10). 
We get new solutions to (10) via our Backlund transformation ( 5 ) ,  (6) which 

contains a rather general parameter A .  If we set A = O  at the beginning (namely, 
attempting to solve M K d v  instead of (lo)) ,  we would lose some solutions for equation 
(10) and the M K d v  equation. In the example we have undertaken if we set A = 0, we 
would have lost solutions (14), (15) (to equation (10)) and the corresponding solutions 
(21), (22) (to equation (19)). 

As we have already given the analytic solutions, we shall analyse solutions (15) 
and (16) numerically as examples in the next section. 

3. Numerical examples 

In this paper, we shall not consider the obvious static solution (14) but focus our 
attention on the more complicated solutions (15) and (16). In other words, we shall 
analyse the behaviour of y -x at different time instants in (15) for A > O  and (16) for 
A = O .  We would note also that C can only take on the values 1 or -1, as stated in 
Au and Fung U982a). From equation (15), as 41x1 >> 1 and 1x1 >> 1, we see that 
y + *Jh tanh[Jh(x -4Ar) for C = 1. In other words, in a space region far from 

For the purpose of demonstration, we shall take C = 1 and A = 1 for solution (15) 
in our analysis. To begin our analysis, we plot the variation of y with x at different 
times according to (15). At t = -2.0, a kink (or antikink for the -y solution) soliton 
appears on the negative x axis (figure l ( a ) ) .  As time elapses, the soliton propagates 
to the right (figure l(6)).  At t = 0, the soliton seems to disappear. We shall learn 
later that the soliton has entered a transientdomain in space and time. In space, this 
transient domain is boucded by x = zkI/JA (=*l in our examples).-The soliton is 
as if cut off at x = - ~ / J A  and part of it appears in the range x > ~ / J A ;  the dynamic 
contribution, having entered branch I1 (figure 3), is influenced remarkably by the 
static contribution, and part of the solution looks like a quantum mechanical tunnelling 
effect, After a transient time interval of the order of 2.0 in this example (described 
later in figure 3), the kink (or antikink) soliton appears and propagates to thgright 
as shown in figures l (c)-(e) .  Note'that close to the boundary x =*1/JA, the 
amplitude of the soliton differs from JA, but at large 1x1 and Itl, the asymptotic value 
of the amplitude is JA. 

When 6 (given by (17)) is equal to a constant, we interpret o = (dx/dt)E=constant as 
the velocity of the kink soliton. It is then interesting to find out how this velocity 
varies as the soliton travels. In figure 2 we show the velocity U (normalised to 4 A ) - x  
plot. On reaching the boundary (x = *l/A) from the left side (x = - l ) ,  the velocity 
is zero. In this case, from (11) and (13), we see that the solution u(x, t )  = -1/x2 
decides the velocity variation since 6 is deduced from (13). It is exactly because of 
this that the velocity tends to --oO as x tends to zero. We observe clearly that, 
asymptotically, U + 4A as x + *CO. 

We now turn our attention to the interesting transient domain. We show in figures 
3 ( a ) - ( m )  a series of y-x graphs for the following time instants: -0.25, -0.20, -0.15, 

the singularities x = *l/ J A and x = 0, y is a kink-antikink solution. 
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Figure 1. A kink solution propagates to the right according to solution (15) for C = 1.0 
and A = 1.0, and at different time instants: ( a )  I = -2.0, ( b )  t = 0,  ( c )  t = 1.0, ( d )  t = 2.0. 

Figure 2. Dependence of the normalised velocity v / ( 4 A )  with x for solution (15). 

-0.10, -0.05, 0 ,  0.05, 0.107 0.15, 0.20, 0.25, 0.50 and 0.87. In order to see the 
relative contributions from the static and dynamic contributions, we show separately 
in each figure the static contribution (broken curve, first term of solution (15)) and 
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f 

Figure 3. 

the dynamic contribution (chain curve, second term of (15)). The full curve indicates 
the total contribution. We may separate the soliton solutions into three branches I, 
I1 and I11 in space, specified by 

I (--Co<x 
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Figure 3. 

I1 ( - 1 / J i s x  s I/&) 

I11 ( l /&x  <a). 

For b = 0, the soliton travels from I to 111. 
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Figure 3. 

As we follow the time sequence of events, we observe that the solution (rather 
than the soliton because it does not have the appearance of a soliton) vibrates up and 
down in the three branches while travelling to the right within the transient time 
roughly specified by -1.0 < t < 1.0. The two vertical lines specified by x = * ~ / J A  = 
k l ,  which divide the x axis into three branches, represent singularities at certain 
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1 ;  

-3 

Figure 3. Transient behaviour of the kink solution 115) for 
C = 1.0, A = 1.0 at various instants of time: ( a )  t = -0.25, I - 

times. There are instants, however, when there are discontinuities of the y solutions 
across x = *l, but y does not tend to positive or negative infinity. As the soliton 
propagates, the dynamic contribution influences the static contribution and the 
behaviour of y in branch I1 is rather complex. At the end of the transient period, 
branch I1 joins branch I11 and this occurs in our example slightly later than t = 0.87 
(figure 3(m j j .  After that, the soliton begins its 'normal' propagation to the right, in 
the manner shown in figure 1. 

We shall leave solution (15) and turn to solution (16) to the MKdv equation. 
In figures 4 ( a ) - ( g ) ,  we show the y-x graphs according to solution (16) for D =0,  

t = -100, -10, 1, 0 ,  1, 10, 100. The solution appears in three branches in space, but 
in a manner different from figure 3 (A > Oj, in the sense that there is no fixed boundary 
in space. At the remote past (as represented by t = -loo), the middle branch has an 
inverted U shape. As time evolves, the other two branches move towards the origin, 

I " . ' ' ' - -  

-5 -1 0 X '  

i 

Figure 4. 
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1 

n if 
X 

I 
Figure 4. y against x according to 
modified KdV solution (16) for 
A = 0 ,  D=O at ( a )  r=-100, 
i b )  r=-10, i c )  r = - l ,  i d )  t = O ,  
ie) r = 1, ( f )  r = 10, (g) r = 100. 

and the inverted U curve is being squashed up, as shown in the development of figures 
4(a) ,  (6) and (c). At t = 0 (figure 4(e)j the two curves become simply asymmetric 
with respect to the y and x axes. The curves have some type of mirror property: the 
figure at t = -tl (e.g. figure 4(c), t l  = 1) is identical to that at t = t l  (figure 4(e)j if both 
x and y are inverted. The transient behaviour of solution (16) around t = 0 is not so 
complicated as indicated in figure 3 (A  > 0) and we shall not present our analysis here. 
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4. Conclusion 

In this study we have used the K d v  solution U = -1/x2 obtained earlier to arrive at 
new sets of solutions to the nonlinear equations (10) and (19) according to the theorems 
we have just derived. We have emphasised in 8 2 that our Backlund transformation 
( 5 ) ,  ( 6 )  contains a generally non-zero parameter A .  Therefore we may obtain more 
information in solving equation ( lo) ,  rather than (19), even though these two equations 
can be transformed to each other via (20). Such theorems are very powerful in 
obtaining new solutions to a nonlinear equation based on known ones of another 
nonlinear equation. We anticipate that our method will be very useful in bridging 
various nonlinear equations and deserves further developments. 

We can separate the categories of our solutions into three kinds, A > 0, A = 0 and 
A < O .  As examples, we have analysed in detail solutions (15) for A > O  and (16) for 
A =0 ,  the M K d v  solution. Solution (15) is a set of kink-antikink soliton solutions, 
propagating to the right with varying velocity. The soliton passes through a transient 
domain in space (bounded by x = *l/dA) and time. 

In our analytical deduction, we have studied only the simplest case where the 
vacuum parameter b = 0. For non-zero b, we anticipate that solitons propagating in 
both left and right directions could appear. Further analysis is needed to arrive at 
solutions for b # 0. 

Using our theorems (Fung and Au 19821, we can also obtain new K d v  solutions 
using our solutions (14)-(16) to equation (4) presented here. In a certain sense (like 
velocity variation) such a KdV one-soliton solution is similar to our kink-antikink 
solution (15). This research will be published elsewhere (Au and Fung 1982b). 

References 

Au C and Fung P C W 1982a Phys. Rev.  B 25 6460-4 
- 1982b Korteweg-de Vries Solifon Propagating with Varying Vebci ty  to be published 
Fung P C W and Au C 1982 Phys. Rev.  B 26 4035-8 
Wahlquist H D and Estabrook F B 1975 J.  Math. Phys. 16 1-6 


